2 research outputs found

    Biomimetic Photodiode Device with Large Photocurrent Response Using Photosynthetic Pigment-protein Complexes

    Full text link
    Efficient light to energy conversion was demonstrated in solid-state, lateral photodiodes device containing photosynthetic light-harvesting chlorophyll protein complexes as active materials. The device exhibits the highest reported photocurrent density response of 365 µA/cm2 when illuminated at 320 mW/cm2 radiation source power. The photocurrent response was stabled over 104 s of continuous cycles of dark and illumination states. The short rise and decay time of the photocurrent waveform within sub-second range indicates an effective photogeneration and charge extraction within the device. Optical bandgap extraction using absorption coefficient method reveals that the energy gap of the active materials ranges from 2.8 to 3.8 eV, correspond to the Photosystem I and Photosystem II of the photosynthetic pigment-protein complexes

    Measurement of the degree of polarisation of thermally modified Scots pine using a Stokes imaging polarimeter

    No full text
    Abstract This study measured the polarised light reflected from the surface of thermally modified Scots pine (Pinus sylvestris L.) wood using a Stokes imaging polarimeter. The data were analysed using the Mueller matrix method. The Scots pine boards were heat treated in an oven at temperatures of 160 ºC, 200 ºC and 220 ºC, with a heat treatment time of 3 h at the maximum temperature. The results indicated that the chemical composition of the thermally modified wood underwent a permanent transformation, leading to a change in the degree of polarisation of the reflected light. The presented method provides useful information for inspecting the quality of thermally modified wood products
    corecore